SZTE-NLP at SemEval-2017 Task 10: A High Precision Sequence Model for Keyphrase Extraction Utilizing Sparse Coding for Feature Generation
نویسنده
چکیده
In this paper we introduce our system participating at the 2017 SemEval shared task on keyphrase extraction from scientific documents. We aimed at the creation of a keyphrase extraction approach which relies on as little external resources as possible. Without applying any hand-crafted external resources, and only utilizing a transformed version of word embeddings trained at Wikipedia, our proposed system manages to perform among the best participating systems in terms of precision.
منابع مشابه
PKU_ICL at SemEval-2017 Task 10: Keyphrase Extraction with Model Ensemble and External Knowledge
This paper presents a system that participated in SemEval 2017 Task 10 (subtask A and subtask B): Extracting Keyphrases and Relations from Scientific Publications (Augenstein et al., 2017). Our proposed approach utilizes external knowledge to enrich feature representation of candidate keyphrase, includingWikipedia, IEEE taxonomy and pre-trained word embeddings etc. Ensemble of unsupervised mode...
متن کاملNTNU-2 at SemEval-2017 Task 10: Identifying Synonym and Hyponym Relations among Keyphrases in Scientific Documents
This paper presents our relation extraction system for subtask C of SemEval-2017 Task 10: ScienceIE. Assuming that the keyphrases are already annotated in the input data, our work explores a wide range of linguistic features, applies various feature selection techniques, optimizes the hyper parameters and class weights and experiments with different problem formulations (single classification m...
متن کاملWING-NUS at SemEval-2017 Task 10: Keyphrase Identification and Classification as Joint Sequence Labeling
We describe an end-to-end pipeline processing approach for SemEval 2017’s Task 10 to extract keyphrases and their relations from scientific publications. We jointly identify and classify keyphrases by modeling the subtasks as sequential labeling. Our system utilizes standard, surface-level features along with the adjacent word features, and performs conditional decoding on whole text to extract...
متن کاملMayoNLP at SemEval 2017 Task 10: Word Embedding Distance Pattern for Keyphrase Classification in Scientific Publications
In this paper, we present MayoNLP’s results from the participation in the ScienceIE share task at SemEval 2017. We focused on the keyphrase classification task (Subtask B). We explored semantic similarities and patterns of keyphrases in scientific publications using pre-trained word embedding models. Word Embedding Distance Pattern, which uses the head noun word embedding to generate distance p...
متن کاملA New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model
Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017